Suspension considerations

Thridly, the damping rate must be no less than 20 per cent (D=0.2) of the ‘critical damping’ level, for which no overshoot occurs.

The higher the damping level, the lower the second peak force is when compared to the first peak. However, the higher the damping, the more sluggish the suspension response. If the damping rate is above D=0.5 then the response will feel ‘floaty’. Finally, the damping due to friction (in the springs, airbags and tyres) must be no more than half of the total damping, meaning that shock absorbers are needed to do at least half the damping work.

Most air bag suspensions will qualify as road friendly and most mechanical (spring) suspensions do not. Invariably, RFS will have shock absorbers, the condition of which will determine whether the suspension will remain effective.

The tyres are also part of the suspension and changes to their size will affect the certification status of an RFS. To maintain load sharing between axles, the tyre pressures should be regularly checked and about equal.

Is there a benefit for the truck dynamics in having RFS? Probably, because it will have a relatively soft ride when compared to very stiff and therefore road unfriendly suspensions. Suspensions at the rear of a motor vehicle will be installed on a strong section of the chassis rail ladder and there will usually be a rail insert. Consequently, the forces that the suspension exerts onto the chassis rails can be easily absorbed. A stiff chassis rail ladder, such as achieved with a full chassis rail insert, will provide a stiff platform for the suspension to work against and will assist the vehicle to follow the road.

Road friendliness is unrelated to roll stiffness. High roll stiffness will improve the dynamic performance of the vehicle by reducing the twisting oscillations. For air suspensions, roll stiffness is predominately provided by anti-roll bars, axle beam strength and trailing arm strength. Roll stiffness is not relevant to the road friendly test performance.

In summary, RFS are likely to provide a relatively soft cabin ride but chassis ladder stiffness and roll stiffness are important factors that are independent of road friendliness.

<table>
<thead>
<tr>
<th>Conditions</th>
<th>General Access Limits</th>
<th>Concessionals Mass Limits</th>
<th>Higher Mass Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The load on a single axle can be 6.5t with FUPs and Cabin strength certification</td>
<td>1 Mass management in NHVAS</td>
<td>1 RFS 2 Mass management in NHVAS</td>
</tr>
</tbody>
</table>

Axle Group:

- Single steer axle with 2 tyres: 6.5 t
- Twin steer axle group with single tyres: 10.0 t
- Single axle with 4 tyres: 9.0 t
- Tandem group with four tyres: 11.0 t
- Tandem group with 6 tyres: 13.0 t
- Tandem group with 8 tyres: 16.5 t
- Tri-axle group with 6 tyres: 15.0 t
- Tri-axle group with 12 tyres: 20.0 t
- Quad-axle groups with 8 tyres: 15.0 t
- Quad-axle groups with 16 tyres: 20.0 t

There is controversy about the speed of response of air bag suspensions to changed road conditions. Typically, levelling valves will have a five second response time. That is, the air bags will take more than five seconds to pump up or deflate when there is a change of road profile. Manufacturers deliberately avoid allowing having the air bags change height fast because the vehicle attitude might be wrong for the second bend in an S-bend. Some operators argue that fast air bag inflation can improve roll stability during turns. For example, some concrete agitator operators install an air bag control system that has fast acting levelling valves and large diameter air pipes. Such systems may have merit in specialist applications but they may increase roll over risk in general applications.

For reference, the mass limits that are applied by the National Heavy Vehicle Regulator are shown in the table on the left. Higher mass limits are available if the rear has RFS.

Peter Hart
Chairman, ARTSA

With FUPs and meeting ECE Regulation 2/9 Cabin Strength. Without this requirement the axle mass limit reduces to 6.0 t.

Based on non load sharing suspension system. Load sharing suspension systems have greater load limits (1.0 t). Refer to NHVR GML Fact Sheet for more information.

Based on tyre section width of less than 375mm. Larger section width tyres have greater mass limits. Refer to NHVR GML Fact Sheet for more information.

Subject to vehicle Gross Combination Mass and operating state. Refer to NHVR Crn Fact Sheet for more information.